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1. 

The Rayleigh–Ritz method has proven to be a popular and powerful method for
determining the natural frequencies and mode shapes of free vibration of
continuous systems. When formulated using the potential and kinetic energies of
the system, the method requires only that the chosen displacement functions
(admissible functions) form a complete series and be able to satisfy the geometric
boundary conditions of the system in order that the solution should converge
toward the exact natural frequencies. The convergence is almost exclusively from
above, although, as pointed out by Bhat [1], the Rayleigh–Ritz optimisation
process renders the natural frequencies stationary but not necessarily minima and
hence upper bounds. However, the acknowledged effective upper bound
characteristic that does exist is a very important and useful feature of the method.

It is sometimes difficult or inconvenient to choose admissible functions that
satisfy the geometric boundary conditions of rigidly supported or rigidly
connected systems. Following the work of Courant [2], some researchers have
treated such systems by using fully free or partially restrained admissible functions
and satisfying the required rigid support and/or rigid connection conditions
through the introduction of what are sometimes called ‘‘artificial springs’’
(although a better description may be ‘‘imaginary springs’’). The stiffness of these
springs (translational and/or rotational) is permitted to become very high, thus
approximating rigid connections or supports. (This can be viewed as a physical
interpretation of the penalty function method [3].) Examples of this approach for
single plates are found in the works by Filipich et al. [4], Warburton and Edney
[5], Gorman [6] and by Kim et al. [7], in which simply supported and clamped
rectangular plates were treated as limiting cases of spring supported plates. The
usefulness of the approach for the treatment of connected systems is demonstrated
in the works by Yuan and Dickinson on straight and curved beam systems [8],
rectangular plate systems [9], circular and annular plate/cylindrical shell systems
[10] and circular, annular and sectorial plate systems [11, 12]. The approach was
also used by Cheng and Nicolas [13] for the study of circular plate/cylindrical shell
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systems, Lee and Ng [14, 15] for cracked and stepped beams and by Young and
Dickinson for connected, general sectorial plates [16] and shallow shells [17, 18].

As mentioned, the correct application of a Rayleigh–Ritz solution for
continuous systems almost always yields upper bounds on the natural frequencies.
With the introduction of imaginary springs to approximate rigid supports and/or
connections, this useful characteristic is maintained for the approximate (slightly
more flexible) model but not necessarily for the true, rigidly supported and/or
connected system. In the cases cited above, the upper bound characteristic for the
original systems was essentially preserved as it was possible to use sufficiently high
values of stiffness for the springs, without encountering numerical difficulties in
the computations, such that the achieved degree of convergence from below (as
the spring stiffness was increased) was considerably higher than that achieved in
the convergence from above (as the number of terms in the series was increased).
In general, however, the relative degree of convergence achievable by increasing
the spring stiffnesses and the number of terms in the displacement series will be
dependent upon the nature of the system, the nature of the chosen displacement
functions and the mode in question. For example, if an analyst were fortunate
enough to choose a set of displacement functions that were exact for the original
system, then no matter what finite value of stiffness were to be used for the
imaginary springs, the solution would always be below that for the true system.

It would clearly be of benefit to modify the approach in order that the effective
upper bound characteristic is maintained. This can be done simply by the
introduction of imaginary springs of negative instead of positive stiffness. A
physical interpretation, though not essential, is interesting and useful to
consider. The introduction of a spring of negative stiffness can be construed as
equivalent to the introduction of a point mass of value ‘‘stiffness/v2’’ (where v is
the circular frequency), since the ‘‘force of restraint’’ in one case is
‘‘−stiffness×displacement’’ and in the other ‘‘−mass×v2 ×displacement’’.
Here the displacement must be interpreted as the relative displacement experienced
by the spring, whether it is approximating a rigid boundary or a connection
between two components.

In order to illustrate the behaviour of the solution for systems asymptotically
modelled in this manner, a clamped–simply supported beam and a simply
supported stepped beam are considered. Comparisons of results obtained by using
positive and negative spring stiffnesses with those from exact and/or Lagrangian
Multiplier solutions show the error introduced by the asymptotic modelling. The
emphasis here is on the methods of analysis rather than on the systems considered.
Therefore, in order to keep the article short, the approaches used are described
but the fairly lengthy equations that result are not given.

2.  

2.1. Natural frequencies of a clamped-simply supported beam
In order to illustrate the behaviour of a system with a support approximated

by a spring of positive and negative stiffness, an Euler–Bernouilli beam of length
L, flexural rigidity EI, cross sectional area A and density r, clamped at one end
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and laterally supported at the other by a spring of stiffness k with no rotational
constraint (ultimately to approximate a simple support), is considered. The exact
solution for the problem is readily obtainable from the beam differential equation
with substitution of the appropriate boundary conditions. Table 1 shows the
non-dimensional frequency parameter l=(rAL4v2/EI)1/4 for the first few modes
of vibration, as computed using this exact solution, with increasing values of
positive and negative spring stiffness parameter K= kL3/EI, together with the
exact solutions for a clamped-simply supported beam [19]. It may be seen that as
the absolute value of the spring stiffness parameter is increased, the values of the
frequency parameters converge toward those for a clamped-simply supported
beam, approaching from below for the positive spring stiffness and from above
for the negative stiffness, as would be expected. The bounds on the solution
obtained with any particular value of the modulus of K are immediately evident.

T 1

Exact natural frequency parameters for clamped-partially
restrained beam

Frequency parameter
ZXXXXXXXXCXXXXXXXXV

K l1 l2 l3

−1E+09 3·92660 7·06858
−100000000 3·92660 7·06858
−10000000 3·92661 7·06860
−1000000 3·92663 7·06876
−100000 3·92689 7·07035
−10000 3·92946 7·08610
−1000 3·95502 7·22632
−100 4·17660 7·67558
−10 4·60144 7·83439

−2·99 0·45383 4·66551 7·84861
−2·95 0·67857 4·66589 7·84869
−2·9 0·80686 4·66636 7·84880
−2·8 0·95929 4·66731 7·84900
−2·4 1·26129 4·67110 7·84982

−2 1·43171 4·67490 7·85064
−1 1·69848 4·68446 7·85270

0 1·87510 4·69409 7·85476
1 2·01000 4·70379 7·85682

10 2·63892 4·79377 7·87565
100 3·64054 5·61600 8·08409

1000 3·89780 6·87629 9·55253
10000 3·92374 7·05070 10·15498

100000 3·92632 7·06681 10·20483
1000000 3·92657 7·06841 10·20964

10000000 3·92660 7·06856 10·21012
100000000 3·92660 7·06858 10·21017

1000000000 3·92660 7·06858 10·21018
a [19] 3·92660 7·06858 10·21018
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It is interesting to note that as K tends towards −3, where the absolute value
of the stiffness becomes that of a tip loaded cantilever, the fundamental frequency
tends towards zero; this represents a flutter type of instability. (If the added mass
interpretation is put on the use of a spring of negative stiffness, then this
corresponds to the mass tending towards infinity and the circular frequency
tending towards zero, the non-dimensional product of the mass and v2, tending
towards 3.) When using the imaginary spring of negative stiffness to approximate
a rigid support or connection, the risk of the introduction of zero frequency modes
is negligible as the absolute value of the stiffness would always be chosen to be
orders of magnitude larger than that that could lead to such a case.

A Rayleigh–Ritz solution for the clamped-spring supported problem may be
formulated as follows. The lateral displacement of the beam may be expressed by
the series of simple polynomials

f(x)= s
n

j=1

aj (x/L) j+1, (1)

where n is the number of terms used. These functions satisfy the zero slope and
displacement condition at the clamped end (x=0) but permit slope and deflection
to exist at the spring supported end (x=L). When substituted into the
Rayleigh–Ritz minimisation equation,

1V/1ai −v21c/1ai =0, (2)

where the total potential energy V due to vibration and the kinetic energy function
c are given by

V=g
L

0

EI
2

( f 0(x))2 dx+ 1
2k · f(L)2, C=g

L

0

m
2

( f(x))2 dx. (2a, b)

A matrix eigenvalue problem of the standard form results which can be solved
using any one of a number of standard algorithms. (For this work, the eliminant
was formed and the roots determined using a Newton–Raphson approach.) As
mentioned before, the clamped-simply supported case is approached by letting the
modulus of k become very large.

The Lagrangian multiplier method is useful for comparison purposes, since it
identically satisfies the rigid support condition and can be constructed using the
same shape functions. Here, an additional constraint equation is required,

f(L)=S aj (L/L) j =S aj =0, (3)

and the deletion of the k term in equation (2a). The modified Rayleigh–Ritz
equation then becomes

1V/1ai −v21c/1ai + 1(an+1 · f(L))/1ai =0, (4)

in which the Lagrangian multiplier is denoted by an+1. The matrix equation that
results is not of the standard eigenvalue form but, again, the natural frequencies
may be determined by searching for the roots of the eliminant.
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T 2

Comparison of natural frequency parameters for the clamped-restrained beam

=K=
ZXXXXXXXXXCXXXXXXXXXV

n Sign of K 105 106 107 108 Lagrangian

First Mode: l1 =3·92660*
5 + 3·92635 3·92661 3·92664 3·92664 3·92664

− 3·92643 3·92667 3·92664 3·92664
6 + 3·92632 3·92658 3·92660 3·92661 3·92661

− 3·92689 3·92664 3·92661 3·92661
7 + 3·92632 3·92657 3·92660 3·92660 3·92660

− 3·92689 3·92663 3·92661 3·92660
8 + 3·92632 3·92657 3·92660 3·92660 3·92660

− 3·92689 3·92663 3·92661 3·92660

Second Mode: l2 =7·0686*
5 + 7·0966 7·0983 7·0985 7·0985 7·0985

− 7·1004 7·0987 7·0986 7·0986
6 + 7·0687 7·0694 7·0696 7·0696 7·0696

− 7·0713 7·0697 7·0696 7·0696
7 + 7·0671 7·0687 7·0688 7·0688 7·0689

− 7·0706 7·0690 7·0689 7·0689
8 + 7·0668 7·0684 7·0686 7·0686 7·0686

− 7·0704 7·0688 7·0686 7·0686

Third Mode: l3 =10·210*
5 + 10·422 10·428 10·428 10·428 10·428

− 10·434 10·429 10·428 10·428
6 + 10·344 10·350 10·351 10·351 10·351

− 10·357 10·351 10·351 10·351
7 + 10·213 10·217 10·218 10·218 10·218

− 10·223 10·218 10·218 10·218
8 + 10·208 10·213 10·213 10·213 10·213

− 10·219 10·214 10·213 10·213

* ‘‘Exact value’’ from the solution of the characteristic equation [19].

Table 2 shows a convergence study for the first three modes of vibration of the
clamped-simply supported beam as obtained using imaginary springs and the
Lagrangian multiplier. The exact values are also given. As would be expected,
as n is increased, the frequency parameters decrease both for any fixed value of
K and for the Lagrangian multiplier solution. As the modulus of K is increased,
for any particular value of n, the frequency parameters decrease for −K and
increase for +K. It can be seen that the imaginary spring results always bound
the equivalent Lagrangian multiplier solution and the effect of approximating the
rigid support by means of the imaginary springs is evident. In all cases,
convergence is towards the exact solution. The −K and Lagrangian multiplier
solutions always yield upper bounds on the true values but that is not the case
for +K solutions. It may be noted that numerical problems began to be
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encountered when using nine terms in the series or when using values of the
modulus of K of 109. However, convergence has been achieved to five figures for
modulus of K=108 and four figures for n=8. Typically, a higher degree of
convergence is achievable with increase in K than for increase in n before numerical
problems are encountered. There will be exceptions to this, where the chosen shape
functions extremely accurately approximate the true displacement of the system,
but, in the experience of the writers, this is rarely the case for systems where the
use of an approximate method of analysis is necessary.

2.2. Natural frequencies of a stepped, simply supported beam
In order to illustrate the behaviour of the solutions for a connected system, the

stepped beam treated in reference [8] and shown in Figure 1(a) was considered.
As in reference [8], it is modelled by two simply supported-free beams that are
connected together by means of a translational and a rotational spring, each of
very large stiffness, as illustrated in Figure 1(b). The only modification here is that
the stiffness of the springs is permitted to be both positive and negative. In
addition, an equivalent Lagrangian multiplier solution is given. For both
solutions, the displacement functions are chosen as the simple polynomials

f1(x1)= s
n

j=1

aj (x1/L1) j, for beam 1, (5a)

and

f2(x2)= s
2n

j= n+1

aj (x2/L2) j− n, for beam 2, (5b)

Figure 1. (a) A stepped simply supported beam and (b) its asymptotic model.
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where n is the number of terms in the series and is taken to be the same for each
section for convenience. The kinetic energy of the system is given by

C=g
L1

0

m1

2
( f1(x1))2 dx1 +g

L2

0

m2

2
( f2(x2))2 dx2. (6)

For the imaginary spring solution, the total potential energy of the system is given
by

V=g
L1

0

EI1

2
( f 01 (x1))2 dx1 +g

L2

0

EI2

2
( f 02 (x2))2 dx2 + 1

2 k( f1(L1)

− f2(L2))2 + 1
2 kr ( f '1 (L1)+ f '2 (L2))2. (7)

Substitution of equations (6) and (7) into the minimisation equation (2) again
results in an eigenvalue matrix equation of the standard form.

For the Lagrangian multiplier solution, the deflection and slope continuity
conditions at the joint require the constraint equations

f1(L1)− f2(L2)=0, f '1 (L1)+ f '2 (L2)=0, (8a, b)

be imposed and the quantities k and kr in equation (7) be set to zero. Incorporating
these conditions in the Rayleigh–Ritz minimisation equation gives

1V/1ai −v21c/1ai + 1(an+1 · ( f1(L1)− f2(L2)))/1ai

+ 1(an+2 · ( f '1 (L1)+ f '2 (L2)))/1ai =0, (9)

resulting in two additional rows and columns in the eigenvalue equation. The exact
frequency equation for both the rigidly connected and spring connected beams was
also derived from the differential equation.

Table 3 shows the first four natural frequency parameters l=(rA1L4
1v

2/
EI1)1/4 for all the above cases for an assembly of beams of circular cross section
having a diameter ratio (d1/d2) of 5. It can be seen that the frequency parameters
for the models with positive stiffness obtained by using the Rayleigh–Ritz
procedure are less than or equal to those for the corresponding rigid joint model
obtained by using the Lagrangian multiplier method. For springs with negative
stiffness the converse is true. The difference between the Rayleigh–Ritz results and
the results for the Lagrangian multiplier method is due to the asymptotic
approximation of the constraints using large stiffness parameter models. The
difference between the results from the Lagrangian multiplier method and the
exact solutions is due to the approximation of the actual model by a series of
permissible functions as in the normal Rayleigh–Ritz procedure. In the absence
of a Lagrangian multiplier solution, an upper limit of the error due to
approximating rigid conditions may be estimated by taking the difference between
the results for positive stiffness and the results for the corresponding negative
stiffness.

The frequency parameters for the other diameter ratios for which results were
reported in reference [8] were also computed using the positive and negative spring
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T 3

Natural frequency parameters for stepped beam, for d1/d2 =5, n=5 and n=7

Stiffness parameters
ZXXXXXXXXXCXXXXXXXXXV

Mode Method 102 104 106 107 108 a

1 Positive stiffness, n=5 1·0600 1·0733 1·0734 1·0734 1·0734
Negative stiffness, n=5 1·0876 1·0736 1·0734 1·0734 1·0734
Lagrangian multiplier, n=5 1·0734
Positive stiffness, n=7 1·0660 1·0733 1·0734 1·0734 1·0734
Negative stiffness, n=7 1·0876 1·0736 1·0734 1·0734 1·0734
Lagrangian multiplier, n=7 1·0734
Exact (positive stiffness) 1·0600 1·0733 1·0734 1·0734 1·0734 1·0734
Exact (negative stiffness) 1·0876 1·0736 1·0734 1·0734 1·0734 1·0734

2 Positive stiffness, n=5 3·4063 3·9593 3·9654 3·9654 3·9655
Negative stiffness, n=5 4·4076 3·9716 3·9655 3·9655 3·9655
Lagrangian multiplier, n=5 3·9655
Positive stiffness, n=7 3·4060 3·9573 3·9634 3·9634 3·9635
Negative stiffness, n=7 4·4025 3·9695 3·9635 3·9635 3·9635
Lagrangian multiplier, n=7 3·9635
Exact (positive stiffness) 3·4060 3·9573 3·9634 3·9634 3·9634 3·9634
Exact (negative stiffness) 4·4025 3·9695 3·9635 3·9635 3·9634 3·9634

3 Positive stiffness, n=5 5·2230 7·0533 7·0934 7·0938 7·0938
Negative stiffness, n=5 8·0738 7·1334 7·0942 7·0939 7·0938
Lagrangian multiplier, n=5 7·0938
Positive stiffness, n=7 5·2152 7·0101 7·0454 7·0457 7·0457
Negative stiffness, n=7 7·8022 7·0803 7·0461 7·0458 7·0458
Lagrangian multiplier, n=7 7·0458
Exact (positive stiffness) 5·2152 7·0093 7·0445 7·0449 7·0449 7·0449
Exact (negative stiffness) 7·7960 7·0793 7·0452 7·0449 7·0449 7·0449

4 Positive stiffness, n=5 8·2688 8·7906 8·7910 8·7910 8·7910
Negative stiffness, n=5 8·8009 8·7910 8·7910 8·7910 8·7910
Lagrangian multiplier, n=5 8·7910
Positive stiffness, n=7 7·9412 8·7398 8·7429 8·7430 8·7430
Negative stiffness, n=7 8·7823 8·7457 8·7430 8·7430 8·7430
Lagrangian multiplier, n=7 8·7430
Exact (positive stiffness) 7·9338 8·7372 8·7405 8·7406 8·7406 8·7406
Exact (negative stiffness) 8·7818 8·7435 8·7406 8·7406 8·7406 8·7406

models and the Lagrangian multiplier approach. Very close agreement was
achieved between these results and those of reference [8] (they were identical for
the spring of positive stiffness, since the solutions are identical) and the pattern
was consistent with that found for the diameter ratio of 5.

3.  

It has been illustrated that the Rayleigh–Ritz method with the asymptotic
approach of modelling rigid boundary conditions or connections by means of
‘‘artificial’’ or ‘‘imaginary’’ springs can be improved by permitting the stiffness of
these springs to be both positive and negative. By so doing, the bounds on the
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error introduced by the spring approximation may be determined, hence reducing
the need to conduct extensive convergence studies for increase in spring stiffness.
In addition, the useful effective upper bound characteristic of the Rayleigh–Ritz
solution is maintained when negative spring stiffness is used.
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